Tight J-Frames in Krein Space and the Associated J-Frame Potential

نویسندگان

  • Sk. Monowar Hossein
  • Shibashis Karmakar
  • Kallol Paul
چکیده

Motivated by the idea of J-frame for a Krein space K , introduced by Giribet et al. (J. I. Giribet, A. Maestripieri, F. Martnez Peŕıa, P. G. Massey, On frames for Krein spaces, J. Math. Anal. Appl. (1), 393 (2012), 122–137.), we introduce the notion of ζ − J-tight frame for a Krein space K . In this paper we characterize J-orthonormal basis for K in terms of ζ−J-Parseval frame. We show that a Krein space is richly supplied with ζ − J-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two ζ −J-Parseval frames is again a ζ −J-Parseval frame. We then generalize the notion of J-frame potential in Krein space from Hilbert space frame theory. Finally we 918 Sk. Monowar Hossein et al. provided a necessary and sufficient condition for a J-frame potential of the corresponding ζ − J-tight frame to be minimum. Mathematics Subject Classification: 42C15, 46C05, 46C20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of J-fusion Frames in Krein Spaces

In this article we introduce the notion of J-Parseval fusion frames in a Krein space K and characterize 1-uniform J-Parseval fusion frames with ζ = √ 2. We provide some results regarding construction of new J-tight fusion frame from given J-tight fusion frames. We also characterize an uniformly J-definite subspace of a Krein space K in terms of J-fusion frame. Finally we generalize the fundamen...

متن کامل

$p$-adic Dual Shearlet Frames

We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...

متن کامل

Some relationship between G-frames and frames

In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K)$-module $B(H,K)$. This is an extension of [A. Askarizadeh, M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011) 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual fra...

متن کامل

A-B-imprimitivity bimodule frames

Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the ...

متن کامل

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016